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This paper extends the multi-body dynamics modelling strategy for rigid gears to include
compliant gear bodies in multi-mesh transmissions. Only external, fixed center, helical or
spur gears are considered. This formulation combines distributed gear mesh stiffness and
gear blank compliance models in a multi-body dynamics framework resulting in a set of
non-linear differential equations with time-varying coefficients. Linearization and other
simplifications are applied to yield the resulting linear time-invariant equations of motion.
Several solution techniques are then used to determine eigensolutions and forced harmonic
responses. The resulting normal mode solutions are compared to those obtained by the
finite element analysis for several examples of transmission containing flexible gears. These
include ring-gears and bodies with discontinuities. A parametric study has been performed
to assess the effect of gear orientation on the dynamics of transmissions. Finally analytical
predictions are compared to the results of a laboratory experiment.
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1. INTRODUCTION

Multi-mesh geared systems containing thin, weight-optimized gear bodies are common in
many applications including rotorcraft and automotive transmissions. The natural
frequencies of such compliant gears may lie within the gear mesh frequency excitation
regimes. Several noise, vibration and dynamic problems have been reported in the
literature [1–4]. However, gear dynamics researchers have focused mostly on the
mathematical analyses of systems with rigid gears, as evident from the literature reviews
conducted by Ozguven and Houser [5] and later by Blankenship and Singh [6]. Limited
studies on multi-mesh systems with rigid gears have been performed in the past including
the effort by Iida et al. [7], Blankenship and Singh [8], Vinayak et al. [9], Velex and
Flamand [10] and Nogill [40] among others. A new and comprehensive analysis of
multi-mesh geared systems was presented by the authors [9] which included shaft and
bearing deformations but only for rigid gears. Very few researchers have attempted to
include the gear body elasticity together with the rigid body modes of the geared system.
Amirouche [11, 12] used a combination of finite elements and multi-body dynamics
formulation based on the Kane’s equations [13] to develop a composite model of compliant
gear and teeth. This modelling technique results in an extremely large number of d.o.f.
which makes the overall problem computationally intensive. Another multi-body
modelling strategy, as developed by Shabana [14–20], uses generalized displacement
co-ordinates together with deformation shape function to obtain dynamic equations for
multi-body systems with flexible bodies. This is especially attractive for relatively smaller
multi-body systems where this formulation can be applied with moderate computational
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effort. Hence, this solution strategy will be followed in our analysis of transmission systems
with flexible gears which typically may have only a few gears meshing together. The
methodology for rigid gears has already been presented in reference [9].

A compliant gear body may exhibit both transverse (like an annular plate in flexure)
and in-plane (like a ring) motions. There is a substantial body of literature on the vibration
characteristics of circular plates as evident from the well-known monograph by Leissa [21].
A few researchers such as Yu and Mote [22] have included the effect of small perturbations
such as thin slots on the overall dynamics of vibrating or rotating plates. An extensive
study of gear-like disks with holes, slots, thick rims and hubs is presented by the authors
of this article in earlier publications [23, 24]. Eigensolutions of both free–free and
clamped–free disks (with impedance boundary conditions at the disk-shaft interface) have
been calculated and validated in references [9, 23, 24]. Dynamic behavior of rings and
ring-like structures have also been studied by a number of investigators. For instance, Lin
and Soedel [25, 26] and Soedel [27] proposed deformation shape functions and governing
equations for rotating thick and thin circular rings. Huang and Soedel [28–30] have
discussed the effect of dynamic forces on the vibration characteristics of a ring. In
particular they have also compared the response of a rotating ring with stationary force
with that of a stationary ring excited by a rotating force [28].

2. SCOPE AND OBJECTIVES

It is clear from the literature that an analytical methodology that specifically addresses
the dynamics of multi-mesh geared systems with compliant gears has yet to be formulated.
This paper attempts to bridge this void by focusing on a comprehensive yet
tractable solution technique which can be implemented for efficient and reasonably
accurate analyses. Given the complexity of the problem, the scope of this paper is limited
to the examination of only external, involute gears and each spur or helical gear is assumed
to have a fixed center of rotation, as in reference [9]. Figure 1 illustrates four generic
configurations which will be used to illustrate our methodology. As a prelude to a more
complicated analysis, results of only linear time-invariant (LTI) systems are presented in
order to enhance our understanding of the dynamic characteristics of the type of practical
systems shown schematically in Figure 1.

Specific objectives of this paper are as follows: (1) to formulate a new dynamic gear mesh
force expression for systems consisting of compliant gears; (2) to extend this mesh
formulation to multi-mesh geared systems by using the multi-body dynamics (MBD)
techniques which results in non-linear system equations with time or position varying
coefficients (NLTV); (3) to reduce this equation to a more convenient linearized
formulation with time or position varying coefficients (LTV) and finally to a
tractable linear time-invariant (LTI) formulation and study the validity of this reduction;
(4) to compare the dynamic characteristics of a system with compliant versus rigid gears,
and in particular study the effect of force coupling between the rigid body and compliant
body d.o.f.; (5) to validate the proposed methodology by comparing the resulting
eigensolutions for configurations shown in Figure 1 with those predicted by the finite
element method (FEM); (6) to formulate an analytical strategy to calculate forced response
characteristics of a geared system with compliant gears; and (7) to validate methodology
by comparing predictions with FEM results or limited measurements on a gear-like disk.
Overall this article will attempt to extend prior articles [9, 23] by the same authors.

Some typical eigenvalues of a compliant gear-like disk are shown in Figure 2, as
predicted by FEM. Observe that the in-plane ring modes (in radial direction) are dominant
when (ro − ri )/r̄�1·0 where ro , ri and r̄ are the outer, inner and mean radii of a disk.
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Conversely, the out-of-plane plate modes (normal to the disk surface) dominate when
(ro − ri )/r̄e 1·0. These two limiting cases are analyzed and integrated in the multi-body
dynamics methodology as demonstrated by Figures 3(a) and (b). For a complicated gear
blank geometry with arbitrary boundary conditions like Figure 3(c), eigensolutions or
shape functions can be obtained a priori, say from FEM. All three cases will be discussed
further in section 4.

3. SINGLE MESH FORMULATION FOR COMPLIANT GEARS

3.1.  

The single gear pair mesh dynamics for systems containing rigid gears was presented
in an earlier paper by the authors [9]. This formulation is extended here to include effects
of flexibility of the gear blanks themselves as shown in a flowchart form in Figure 4. Like
the earlier paper the equations of motion for the gear i in a pair i–j is given in the dual
domain (t, ui*) form as follows where t is time, ui*= ft

0 Vi* dt is the mean rotational
component and Vi* is the mean rotational velocity of gear i:

Mi(ui*)q̈i
m (t)+Cij− i

m (ui*)q̇i
m (t)−Cij− j

m (ui*)q̇j
m (t)+Kij− i

m (ui*)qi
m −Kij− j

m (ui*)qj
m

+Ki
sb (ui*)qi

m (t)+Ki
ff (ui*)qi

m (t)

=Qi
mo (t)+Qi(t)− (Qij− i*mg (V*, t)−Qij− j*mg (V*, t)), (1)

Figure 1. Example case: geared transmission systems. (a) Single mesh, (b) single mesh complex gear geometry,
(c) dual mesh reverse idler, and (d) dual speed reducer.
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Figure 2. Normalized natural frequencies of a gear-like disk with respect to the out of plane (0, 2) mode of
an annular plate. Here (m, n) represents a plate mode with m nodal circles and n nodal diameters while (n)
represents an in-plane ring (radial direction) mode with n nodal diameters. ——, r=1; – – –, r=2; -----, r=3;
–·–·–, r=4; –··–··–, r=5; · · · ·, r=6.

where Mi is the inertia matrix, Cij− i
m and Cij− j

m are the generalized damping matrices, Kij− i
m

and Kij− j
m are the generalized mesh stiffness matrices, Ki

sb is the generalized shaft-bearing
stiffness matrix, Ki

ff is the generalized structural stiffness matrix for the gear blank i, Qi
me

is the internal force due to transmission error but it includes parametric effects associated

Figure 3. Modelling schemes used to describe compliant gear bodies; (a) Ring theory, (b) plate theory, and
(c) numerically obtained eigensolutions or shape functions.
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Figure 4. Formulation flowchart. (a) Simplification scheme from NLTV and LTI formulation, and (b)
multi-body formulation scheme with compliant gear bodies.
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with Kij− j
m (ui*), Qi is the external generalized force on gear i and qi

m is the generalized
co-ordinate associated with the gear i. The ‘‘pseudo forces’’ Qij− i*mg (V*, t) and Qij− j*

mg (V*, t)
arise due to the coupling between the finite mean rotation of the gear with respect to the
mesh ij and the flexible deformation of the gear blank itself (see the Appendix for
identification of symbols).

The co-ordinate systems for a typical gear pair are given in detail in an earlier paper
by the authors [9]. For the sake of clarity, a brief discussion together with the modifications
necessary to represent the flexibility of the gear blanks is presented here. Figure 5 shows
a few co-ordinate systems for a typical external gear body where X–Y–Z is an inertial
reference frame and Xi

G −Yi
G −Zi

G and Xi
Gm −Yi

Gm −Zi
Gm are non-inertial frames necessary

to completely define the motion of the gear body. Body co-ordinate system Xi
G −Yi

G −Zi
G

is fixed to the gear blank i and hence it represents the true motion of the gear. The
generalized co-ordinates of each gear are given as qi =[RiT

G qiTqiT
f ]T, where Ri

G is the rigid
body translational, ui is the rigid body rotational and qi

f is the gear blank flexibility
co-ordinates as defined in an earlier paper by Vinayak et al. [9]. The decomposition of these
co-ordinates into a mean (subscript o) and a dynamic (subscript m) component is carried
out as outlined by Blankenship and Singh [8] and it is assumed that the dynamic
components are small compared to the corresponding mean components.

The origin of the geometric co-ordinate system Xi
Gm −Yi

Gm −Zi
Gm is coincident with that

of the body co-ordinate and is fixed to the gear blank. This co-ordinate system however
is a non-rotating type and its orientation is represented only by the dynamic component.
The translational motion of this and the body co-ordinate system consists of the mean and
vibratory components. The mean motion is significant for non-fixed centered gears i.e.,
planet gears in an epicyclic transmission system. A mesh co-ordinate system xij − gij −fij

is fixed at the pitch point. Here gij −fij lie in the plane of action while xij is normal to
it, and fij is parallel to the z-axis in the initial state. Yet another co-ordinate system
xij − sij − hij is necessary for the helical gears when the line of action is inclined at an helix
angle of Cij

b to fij. For a spur gear, sij − hij and gij −fij are equivalent.

Figure 5. Schematic of the gear mesh with associated co-ordinate systems.
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3.2.       

A six dimensional mesh force vector concept was introduced by Blankenship and Singh
[8, 38] and Vinayak and Singh [9] as Qij(t)=Qij

o (t)+Qij
m (t)= [Fij(t)T Tij(t)T]T where Qij

o (t)
and Qij

m (t) are mean and vibratory components respectively. The dynamic component
Qij

m (t)=Qij
me (t)+Qij

md (t) consists of an elastic force Qij
me (t) and a dissipative force Qij

md (t).
The elastic mesh force Qij

me (t)=Qij
mg (t)+Qij

me (ui*) consists of Qij
mg (t)=Kij

m (t) [di
q − dj

q ],
where di

q − dj
q is the gross motion of the blanks and an internal, parametric excitation force

Qij
me (t)=Kij

m (t) [di
e − dj

e ] due to the static transmission error STE= dij
e = di

e − dj
e . Here, Kij

m

is the generalized mesh stiffness matrix.
The analytical model of reference [9] is modified to include the effects of flexible gear

blanks. Consider an external helical gear of Figure 5 as described in the mesh co-ordinates
xij − sij − hij. The mesh is modelled by a linear array of springs distributed over the length
of contact Gij, as proposed in references [8, 9], which depends on the tooth surface
modifications, gear shaft misalignments and other mounting errors. The net contact zone
may be off-center on the tooth facewidth say by a length hij. The elastic mesh force Fij

s ij

at a point Ps i in the direction p̂ij, is

>Fij
s j (t)>=Kij(t)>[dri

Ps ij − drj
Ps ij]>ds, (2)

where Kij(t) is a scalar value for mesh stiffness per unit length of contact. Here ri
Ps ij and

rj
Ps ij give the position of Ps ij in the geometric co-ordinates attached to the gears i and j,

respectively, as

ri
Ps j =Ri

G +Aiūi
s ij, rj

Ps j =Rj
G +Ajūj

s ij. (3a, b)

The position vectors ūi
s ij and ūj

s ij are in the geometric co-ordinates (Xi
Gm–Yi

Gm–Zi
Gm ) and

(Xj
Gm–Yj

Gm–Zj
Gm ) of gears i and j respectively and are given as follows where ūi

s ijr and ūj
s ijr are

the new position co-ordinates of Ps i with respect to gears i and j due to rigid body rotation
and ūi

s ijf and ūj
s ijf are the additonal changes in position co-ordinate of Ps j due to the flexible

distortion of the gear bodies i and j respectively:

ūi
s j = ūi

s ijr + ūi
s ijf, ūi

s j = ūj
s ijr + ūj

s ijf. (4a, b)

The displacements due to the flexibility of gear blanks ūi
s ijf and ūj

s ijf have been extensively
characterized by Vinayak and Singh in a separate article [23]. They are given as follows
where qi

f (t) and qj
f (t) are the flexibility co-ordinates and Si

s ij (xi
Gs ij, yi

Gs ij, zi
Gs ij) and Sj

s ij (xj
Gs ij,

yj
Gs ij, zj

Gs ij) are the shape function matrices comprised of complete orthogonal sets of
functions describing the deformable body:

ūi
s ijf =Si

s ij (xi
Gs ij, yi

Gs ij, zi
Gs ij)qi

f (t), ūj
s ijf =Sj

s ij (xj
Gs ij, yj

Gs ij, zj
Gs ij)qj

f (t). (5a, b)

Here, xi
Gs ij, yi

Gs ij, zi
Gs ij and xj

Gs ij, yj
Gs ij, zj

Gs ij are the position co-ordinates of Ps ij in the gear
co-ordinate systems of gears i and j respectively. Further, Ai and Aj are the rotational
transformation matrices formed for these co-ordinate systems given as

Ai(t)= & 1
ui

zm

−ui
ym

−ui
zm

1
ui

xm

ui
ym

−ui
xm

1 ', Aj(t)= & 1
uj

zm

−uj
ym

−uj
zm

1
uj

xm

uj
ym

−uj
xm

1 ', (5c, d)

where angles ui, j
xm , ui, j

ym , ui, j
zm are assumed to be very small such that cos ui, j

xm 1 1 and
sin ui, j

xm 1 ui, j
xm , etc.
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Now, dri
Ps ij and drj

Ps ij can be derived from equation (3) as dri
Ps ij = dRi

G + d(Aiūi
s ij) and

drj
Ps ij = dRj

G + d(Ajūj
s ij). Since �ui, j

xm �=0 and �Ri
G �=0, where � � denotes a spatial

position mean, dui, j
xm = ui, j

xm and dRi
G =Ri

Gm , etc., we get

dri
Ps ij (t)=Ri

Gm +Aiū	 iTs ij Giqi
m +Aidūi

s ij, drj
Ps ij (t)=Rj

Gm +AjūjT
s ij Gjqj

m +Ajdūj
s ij. (6a, b)

Here, vi, j =Gi, jqi, j
m is the angular velocity and qi, j

m =[ui, j
xm ui, j

ym ui, j
zm ]T where the superscript

T implies the transpose. Since ui, j
m ’s are infinitesimally small, vi 1 qi

m and Gi 1 I, where I
is an identity matrix. Further, ūi, j

s j is an asymmetrical matrix formed from
ūi, j

s ij =[ūi, j
s ijx ūi, j

s ijy ūi, j
s ijz ]T and is given by

ūi, j
s ij (t)= & 0

ūi, j
s ijz

−ūi, j
s ijy

−ūi, j
s ijz

0
ūi, j

s ijx

ūi, j
s ijy

−ūi, j
s ijx

0 '
= & 0

ūi, j
s ijzr

−ūi, j
s ijyr

−ūi, j
s ijzr

0
ūi, j

s ijxr

ūi, j
s ijyr

−ūi, j
s ijxr

0 '+ & 0
ūi, j

s ijzf

−ūi, j
s ijyf

−ūi, j
s ijzf

0
ūi, j

s ijxf

ūi, j
s ijyf

−ūi, j
s ijxf

0 '. (7)

With reference to Figure 5, ūi, j
s ijr can be given by the sum of ūi, j

mr , position vector of the
pitch point in geometric co-ordinates and the unit mesh vector q̂ij as ūi, j

s ijr = ūi, j
m + sijq̂ij. The

pitch position vectors are ūi
m =AiTj[Rj

G −Ri
G ] and ūj

m =AjTj[Ri
G −Rj

G ], where j=fi/
(fi +fj). These can now be used to obtain an expression for dūi

s ij dūj
s ij as

dūi
s ij (t)= jd[AiT(t) (Rj

G (t, ui*)−Ri
G (t, ui*))]+ sijdq̂ij + dūi

s ijf (t), (8a)

dūj
s ij (t)= jd[AjT(t) (Ri

G (t, ui*)−Rj
G (t, ui*))]+ sijdq̂ij + dūi

s ijf (t). (8b)

Expressions for the mesh unit vectors ûij, v̂ij, q̂ij and p̂ij have already been derived by
Blankenship and Singh [8]. These can be used to obtain

dq̂ij = d$Li
u 6ûij

v̂ij7%
where

$Li
u

Li
v%=$cos Ci

b

sin Ci
b

−sin Ci
b

cos Ci
b %.

These, together with expressions for

dūi
s ijf (t)= d[Si

s ij (xi
Gs ij, yi

Gs ij, zi
Gs ij)qi

f (t)] and dūj
s ijf (t)= d[Sj

s ij (xj
Gs ij, yj

Gs ij, zj
Gs ij)qi

f (t)],

obtained from equation (5a) are substituted into equation (8) to give

dri
Ps ij (t, ui*)=Ri

Gm (t)−Ai(t)ūi
s ij (t, ui*)qi

m (t)+ jAi(t)d[AiT(t){Rj
G (t, ui*)−Ri

G (t, ui*)}]

+ sijAi(t)d$Li
u 6Ai(t)ûij

Ai(t)v̂ij7{Rj
G (t, ui*)−Ri

G (t, ui*)}%
+Ai(t)d[Si

s ij (xi
Gs ij, yi

Gs ij, zi
Gs ij)qi

f (t)], (9a)

˜

˜

˜

˜
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drj
Ps ij (t, uj*)=Rj

Gm (t)−Aj(t)ū	js ij (t, uj*)qj
m (t)+ jAj(t)d[AjT(t){Ri

G (t, ui*)−Rj
G (t, ui*)}]

+ sijAj(t)d$Lj
u 6Aj(t)ûji

Aj(t)v̂ji7{Ri
G (t, uj*)−Rj

G (t, uj*)}%
+Aj(t)d[Sj

s ij (xj
Gs ij, yj

Gs ij, zj
Gs ij)qj

f (t)]. (9b)

These can be used to determine dri
Ps ij and drj

Ps ij at any instant of time t and nominal angular
positions ui* and uj*. Subsequently, the instantaneous mesh force Fij

s ij at the point Ps ij can
be obtained. The generalized force Qij

mgs ij due to the instantaneous mesh point force Fij
s ij is

given by

Qij
mgs ij 1 [I Aiū	iTs ij AiSi]TFij

s ij =[I Aiū	iTs j AiSi]Tp̂ij>Fij
s ij >.

Substitution in equation (2) yields

Qij
mgs ij (t, ui*)1 & I

ū	is ij AiT

SiTAiT'p̂ijKijp̂ijT{dri
Ps ij (t, ui*)− dri

Ps ij (t, uj*)}ds. (10)

Assuming that the contact occurs over the entire zone of contact along the line of action
between gears i and j, the total generalized mesh force on gear i is

Qij
mg (t, ui*)=g

hij +Gij/2

hij −G ij/2 2& I
ū	is ij AiT

SiTAiT'p̂ijKijp̂ijT{dri
Ps ij (t, ui*)− dri

Ps ij (t, uj*)}3 ds. (11)

Similarly, the parametric excitation force Qij
me due to kinematic errors between teeth and

elastic deflections of teeth is

Qij
me (t, ui*)=g

hij +Gij/2

hij −G ij/2 2& I
ū	is ij AiT

SiTAiT'p̂ijKijp̂ijT3 ds(di
em − dj

em ), (12)

where di
e and dj

e are three dimensional transmission error vectors described in the mesh
co-ordinates (xij − sij − hij).

3.3.      

The assumption of quasi-static state, i.e., limit V*:0, which was used to simplify the
mesh force expression for systems containing rigid gears [16], is no longer valid when the
gears are relatively compliant. Nevertheless the total generalized force on any gear can still
be given in the t domain only as follows by assuming u*=V*t for a system rotating with
a constant V*:

Qij
m (t)=Qij

mg (t)+Qij
me (di

em ,dj
em , t)+Qij

md (t). (13)

Since the vibratory generalized co-ordinates ui
m , dRi

G and qi
fm are assumed to be small

compared to mean components ui
o , Ri

Go
and qi

fo , any products of vibratory components can
obviously be neglected. It is desirable at this juncture since equation (16) is non-linear with
time and position varying coefficients. Solutions of such equations are very
computationally intensive, especially for systems with multi-meshes. For instance, the third
term of equation (9), Aid(ū	is ij) consists of some non-linear product of very small
components which can be effectively neglected thereby reducing this term to
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Ai(t)d[Si
s ij (xi

Gs ij, yi
Gs ij, zi

Gs ij)qi
f (t)]. Here Si

s ij(xi
Gs ij, yi

Gs ij, zi
Gs ij) is the shape function

Ps j (xi
Gs ij, yi

Gs ij, zi
Gs ij), a point on the line of action, which can be visualized as rotating in the

gear body co-ordinate system with a velocity V*. Thus dSi
s ij (xi

Gs ij, yi
Gs ij, zi

Gs ij) can be quite
large, resulting in no further simplification of this term. Similar simplifications are possible
for the equations of gear j. Equations (9a and b) can now be reformulated as
dri

Ps ij 1Ri
Gm +AiūT

s ij qi
m +AiSi

s ij qi
fm +AidSi

s ij qi
f and drj

Ps ij 1Rj
Gm +AjūT

s ij qj
m +AiSj

s ij qj
fm +

AjdSj
s ij qj

f , which can be written in a compact form as follows, where qi
m =[RiT

Gm qiT
m qi

fm ]T

and qj
m =[RjT

Gm qjT
m qj

fm ]T are the quasi-static generalized co-ordinates of gears i and j
respectively:

dri
Ps ij (t)1 [I AiūiT

s ij AiSi
s ij]qi

m +AidSi
s ij qi

f , drj
Ps ij (t)1 [I AjūjT

s ij AjSj
s ij]qj

m +AjdSj
s ij qj

f ,

(14a, b)

The term p̂ij(t)Kijp̂ijT(t) of equations (11) and (12) is non-linear, and in dual domain i.e.,
it is time (t) and position (ui*) dependent. The unit mesh vector p̂ij can be decomposed
into a mean p̂ij

o and a time varying component p̂ij
m as p̂ij(t)= p̂ij

o (Ri
o , Rj

o , ui*)+ p̂ij
m (t). Since

the time varying component is very small, it can also be neglected. Thus the above
mentioned term reduces to p̂ij

o (ui*)Kijp̂ijT
o (ui*) where t is effectively replaced by ui*.

Substituting this and equation (14) in equation (2) and replacing Ai by an identity matrix
I since ui

m’s are small, we get

Qij
mg (t)=Qij− i

mg (t)−Qij− j
mg (t). (15)

Here, Qij− i
mg (t)=Kij− i

m qi
m +Qij− i*mg (V*, t) is the mesh force on gear i due to the motion of

gear body i and Qij− i
mg (t)=Kij− j

m qj
m +Qij− j*mg (V*, t) is the mesh force on gear i due to the

motion of gear body j. The non-linear, dual domain terms Qij− i*mg (V*, t) and Qij− j*mg (V*, t)
appear due to the coupling of the gear blank deformation shape functions and the finite
mean rotation of the gears u* and they are given by the following expression:

Qij− l*mg (V*, t)=g
hij(ui*)+Gij(ui*)/2

hij(u i*)−G ij(u i*)/2 & I
ūi

s ij (ui*)
SiT

s ij 'p̂ij
o (ui*)Kijp̂ijT

o (ui*)dSl
s ij ql

f (t) ds, l= i, j. (16)

Similarly the mesh stiffness Kij− i
m and Kij− j

m are given as

Kij− l
m (ui*)=g

hi(ui*)+Gi(ui*)/2

hi(u i*)−G i(u i*)/2 & I
ūi

s i (ui*)
SiT

s ij 'p̂ij
o (ui*)Kijp̂ijT

o (ui*) [I ūlT

s ij (ui*) Sl
s ij] ds, l= i, j. (17)

This expression for mesh stiffness is similar to the formulation of reference [9] but it has
additional terms which are obviously related to the elastic deformation modes of gear
blanks. It is still linear with normal position varying coefficients. Again, the offset hij(ui*)
and contact length Gij(ui*) can be obtained from the existing gear contact mechanics
programs [31]. Also the stiffness per unit length Kij can be estimated from such programs.
This scheme is shown in a flowchart form in Figure 4(a).

Finally, for the sake of comparison with existing finite element solutions, this model can
be reduced to an LTI form. This can be ahcieved by assuming that the force coupling term
due to the finite rotation of the gears Qij− i*mg (V*, t) and Qij− j*mg (V*, t) are negligible
although this is not always valid since the rotation speed V* is often high. Further hij(ui*)
and Gij(ui*) can be decomposed into mean and ui* varying components as hij

(ui*)= hij
o + hij

m (ui*) and Gij(ui*)=Gij
o +Gij

m (ui*). Now, the ui* varying components can be
neglected to give a linear expression for mesh stiffness with position-invariant coefficients.

˜ ˜

˜ ˜

˜

˜ ˜
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Again, this model may not be accurate since the oscillatory components are not usually
negligible. Nonetheless, this model yields an eigenvalue problem which can be very easily
solved to gain an insight into the dynamic characteristics of the geared system.

4. REDUCED GEAR MESH EXPRESSIONS

4.1.       

For a relatively thin compliant gear (thickness/radiusQ 0·1) as shown in Figure 3(a),
the plate flexural theory may be used to describe the transverse (normal to the gear body)
motions. Also, for most thin gears, (excluding ring and thin rimmed gears which will be
studied in section 3.2), the radial motion (towards the mesh) can be neglected since the
radial stiffness is relatively high compared to the transverse stiffness. With these
assumptions, equations (14a and b) can be reduced as follows, where ū	 is ij =[−ūi

s ijv ūi
s ijx 0]

and ū	 js ij =[−ūj
s ijv ūj

s ijx 0] are formed from mesh position vector and
qi

m =[Ri
Gmx

Ri
Gmy

qi
mz

qi
fm ] and qj

m =[Rj
Gmx

Rj
Gmy

qj
mz

qj
fm ] are the generalized co-ordinates:

I*= &100 0
1
0', dri

Ps ij (t)= [I* ū	 iTs ij Si
s ij]qi

m , drj
Ps ij (t)= [I* ū	 jTs ij Sj

s ij]qj
m . (18a–c)

Here, matrices Si
s ij and Sj

s ij are the shape functions S(r, u, z) evaluated at sij for gears i and
j respectively. Many gear blanks deviate considerably from annular plates because of rims,
hubs, holes within the blanks as well as stiffeners that may be placed. Consequently, a new
bi-orthogonal shape function matrix S(r, u, z) for the classical plate theory has been
explicitly defined and studied in reference [23]. Hence only condensed expressions are
presented here:

S(r, u, z)= [S1 (r, u, z) S2 (r, u, z) . . . Si (r, u, z) . . . SNS (r, u, z)], (19a)

Si (r, u, z)=Rk (r)Ul (u), k=0, . . . , Nr , l=0, . . . , Nu , (19b–d)

NS =(Nr +1) (Nu +1), i= lNr + k+1=1, . . . , NS , (19e, f)

where Rk (r) and Ul (u) are defined as

Rk (r)=6 s
k

j=0

bj
(r− ri )j

(ro − ri )j $ Pk(r): �Rp , Rq �r =g
ro

ri

Rp Rq r dr= dpq 7,

p=0, 1, . . . , Nr , q=0, 1, . . . , Nr (20a)

and

FF J J
GG G G

Ul (u)=

cos 0l2 u1,

sin 0l+1
2

u1,

if l is even

if l is odd,

: �Uf , Ug �u =g
2p

0

Uf Ug du= dfg , (20b)gg h h
GG G G
ff j j

f=0, 1, . . . , Nu , g=0, 1, . . . , Nu .
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Here Pk(r) is a polynomial of order k and

dpq =61, if p= q,
0, if p$ q.

We define an inner product over the (r, u) domain by noting that dr _ r du:

�Si , Sj �r,u = �Rp Uf , Rq Ug �r,u = �Rp , Rq �r �Uf , Ug �u , (21)

i= fNr + p+1, j= gNr + q+1.

Therefore {Si}NS
0 is a bi-orthogonal set with respect to �Si , Sj �r,u = fro

ri f2p
0 Si Sj r du dr.

Hence,

�Si , Sj �r,u = �Rp Uf , Rq Ug �r,u $ 0 if p= qGf= g. (22)

Using equation (18), we obtain the following expression for mesh stiffness where offset
hij(ui*) and contact length Gij(ui*) and stiffness per unit length Kij can again be obtained
from the existing gear contact mechanics programs [31]:

Kij− l
m (ui*)=g

hij(ui*)+Gij(ui*)/2

hij(u i*)−G ij(u i*)/2 & I*
ūi

s ij (ui*)
SiT

s ij 'p̂ij
o (ui*)Kijp̂ijT

o (ui*) [I* ūlT

s ij (ui*) Sl
s ij] ds, l= i, j. (23)

The ‘‘pseudo forces’’ acting on gears Qij− i*
mg (V*, t) and Qij− j*

mg (V*, t) vanish due to the
orthogonality condition. Therefore the rigid body and the transverse flexural motion
equations are uncoupled.

4.2.      

The elastic deformation modes of ring gears in epicyclic trains or gears with thin flanks
as shown in Figure 3(b) are similar to the radial deformation modes of a ring. Hence the
modal functions of a ring [27] can be used in equation (14). The orthogonal shape function
matrix S(u) for a ring are given as follows where u is the angular position in the gear
co-ordinates Xi

G −Yi
G −Zi

G :

S(u)= &cos (u)
sin (u)

0

−sin (u)
cos (u)

0

0
0
0'S*(u), (24a)

S*(u)= [S1 (u) S2 (u) · · · Sr (u) · · · SNs (u)]; (24b)

Sr (u)= &C1 (u)
C1 (u)

0

C2 (u)
C2 (u)

0 ', r=0, 1, 2, . . . , NS . (24c)

Here,

C1 (u)=g
G

G

F

f

cos 0r
2

u1,

sin 0r+1
2

u1,

r is even,

r is odd,

C2 (u)=g
G

G

F

f

sin 0r
2

u1,

cos 0r+1
2

u1,

r is even,

r is odd.

(24d)

˜ ˜



   183

If the transverse modes of such gears are ignored, these equations can again be reduced
to equations (18a and b) where I*= [0 0 1], mesh position vectors

ū	 is ij =$ 0
ūi

s ij
z

ūi
s ijz

0
ūi

s ijy

−ūi
s ijx% and ū	 js j =$ 0

ūj
s ijz

−ūj
s ijz

0
ūj

s ijy

−ūj
s ijx%

and the generalized co-ordinates qi
m =[Ri

Gmz
qi

mx
qi

my
qi

fm ] and qj
m =[Rj

Gmz
qj

mx
qj

my
qj

fm ]. Si
s ij

and Si
s ij are the value of the ring shape function S(u) evaluated at sij for gears i and j

respectively. Again the ‘‘pseudo forces’’ acting on gears Qij− i*mg (V*, t) and Qij− j*mg (V*, t)
vanish due to the orthogonality of the rigid body motion and the radial or circumferential
flexural motion.

4.3.       

It is difficult to obtain theoretical shape functions which may accurately represent the
flexural or rigid body motions of the gears which the gear-shaft sub-assemblies deviate
considerably from any of the classical structural elements mentioned in the preceding
sections such as the one shown in Figure 3(c). For practical systems with complicated
geometry, other numerical solutions obtained from say finite element codes [31] can be
used to obtain the shape functions S(r, u, z) of unassembled sub-assemblies. These can be
assembled in the multi-body dynamics format to model the complete multi-mesh geared
system. This modeling scheme reduces equations (14a and b) to the following where
qi

m = qi
fm and qj

m = qj
fm are flexibility co-ordinates and Si

s ij and Sj
s ij are shape function S(r, u, z)

evaluated at the mesh position sij:

drj
Ps ij (t)=Si

s ij qi
m , drj

Ps ij (t)=Sj
s ij qj

m . (25a, b)

Substituting these into equation (11), the mesh stiffness expression reduces to

Kij− l
m (ui*)=g

hij(ui*)+Gij(ui*)/2

hij(u i*)−G ij(u i*)/2

SiT
s ijp̂ij

o (ui*)Kijp̂ijT
o (ui*)Sl

s ij ds, l= i, j. (26)

Additional ‘‘pseudo forces’’ Qij− i*mg (V*, t) and Qij− j*mg (V*, t) are not required here since
they are implicitly embedded in equation (26).

5. OTHER SYSTEM MATRICES

5.1.      

An additional stiffness matrix Ki
ff (ui*) is needed to characterize the structural stiffness

of the gear blank. Since the formulation of this matrix has already been reported by the
authors in detail in reference [23], only an outline is provided here for the sake of
continuity;

Ki
ffNS×NS

= & 03×3

03×3

0NS×3

03×3

03×3

0NS×3

03×NS

03×NS

Ki
ffNS×NS', Ki

ff =GVi

(DiSi)TAiT
ROT EiTAi

ROT DiSi dV.

(27a, b)

The differential operator Di and the elastic stiffness Ei matrices for the classical thin plate
theory [21] are as follows in the cylindrical co-ordinate (r, u, z) system where Ei is the
Young’s modulus and ni is Poisson’s ratio of the ith gear:
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K L K L
−zi 12

1ri2
Ei

1− ni2
Eini

1− ni2 0G G G G
G G G G
G G G GDi = −zi zi

ri2
12

1ui2 −
zi

ri

1

1ri , Ei =
En

1− ni2
E

1− ni2 0
. (28, 29)

G G G G
G G G G

−2
zi

ri

12

1ri 1ui +2
zi

ri2
1

1ui 0 0
Ei

2(1+ ni)k l k l

Here, Ai
ROT is the rotational matrix associated to the large mean rotation Vi*t about the

Zi
Gm

axis as well as the small vibratory rotational displacements ui
xm , ui

ym and ui
zm :

Ai
ROT (t)= &cos Vi*t

sin Vi*t
0

−sin Vi*t
cos Vi*t

0

0
0
1'Ai(t). (30)

Similar matrices can be formed if other plate theories such as Mindlin’s [32] were used to
model the plate out-of-plane vibration.

The structural stiffness matrix Ki
ff for a ring type gear is similar to equation (27a) with

the matrix Ki
ff given as following, where r̄i is the mean radius, hi is the ring thickness, Ai

is the cross-section area, Ii is the area moment of inertia, Ei is the Young’s modulus and
ni is the Poisson’s ratio of the ith ring gear:

Di

r̄i4
14

1u4 +
k

r̄i2 −
Di

r̄i4
13

1u3 +
ki

r̄i2
1

1u
0

Ki
ff =G

G

G

G

G

K

k

Di

r̄i4
13

1u3 −
ki

r̄i2
1

1u
−

Di

r̄i4
12

1u2 −
ki

r̄i2
12

1u2 0
G
G

G

G

G

L

l

S*(u), (31a)

0 0 0

Di =
Eir̄i3

12(1− n2)
, ki =

Eihi

1− n2. (31b, c)

The structural stiffness matrix Ki
ff when using external, numerically generated shape

functions as described in section 3.3 is again similar to that given in equations (24).
However the differential operator Di and the elastic stiffness matrix Ei are given as

K L
2

1

1x
0 0G G

G G
0 2

1

1y
0G G

G G
G G0 0 2

1

1zG G
G GDi = 1

2 1

1y
1

1x
0

, (32)

G G
G G

1

1z
0

1

1xG G
G G
G G0

1

1z
1

1yk l
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and
K LEi

1− ni2
Eini

1− ni2
Eini

1− ni2 0 0 0G G
G G
G GEini

1− ni2
Ei

1− ni2
Eini

1− ni2 0 0 0
G G
G GEini

1− ni2
Eini

1− ni2
Ei

1− ni2 0 0 0G G
G GEi =

0 0 0
Ei

2(1+ ni)
0 0

. (33)

G G
G G

0 0 0 0
Ei

2(1+ ni)
0G G

G G
G G0 0 0 0 0

Ei

2(1+ ni)k l

5.2.  ,       

The mass matrix expressions developed in reference [9] can now be extended to include
the terms arising due to the flexibility of the gear blanks [23]:

Mi
NS+6,NS+6(t)= &m

i
RR3×3

symm

mi
Ru3×3

mi
uu3×3

mi
RS3×NS

mi
uS3×NS

mi
SSNS×NS ', (34a)

mi
RR3×3

(t)=gVi

riI3×3 dVi, mi
Ru3×3

(t)=Ai gVi

riū	 iP dViGi, (34b, c)

mi
RS3×NS

(t)=Ai
ROT gVi

riSi dVi, (34d)

mi
uu3×3

(t)=GiT gVi

riū	 iPAiTAiū	 iTP dViGi, mi
Ru3×NS

(t)=GiT gVi

riū	 iPAiTAi
ROTSi dVi,

(34e, f)

mi
RuNS×NS

(t)=gVi

riSiTAiT
ROTAi

ROTSi dVi. (34g)

The formulation of the bearing and shaft stiffness have been presented in reference [9].
Again, since the focus of this study is on the gear mesh dynamics, a similar formulation
is used here but certain modifications are necessary to define the gear-shaft interface
boundary conditions i.e., at the internal edge (r= rs ) of the flexible gear disks. Hayashi
et al. [33, 34] have examined thick annular plates which were solidly mounted on shafts
without any clamp or splines; disk and shaft were fabricated as an integral unit in their
experiments. They determined the boundary conditions by assuming the shaft as a
semi-infinite plate. However, it was observed that for relatively long shafts when length
exceeds diameter by a ratio of 10 or more, the combined bending and torsional stiffness
Ki

s of shafts as obtained from beam theory can be lumped with the bearing stiffness Ki
b as

defined in reference [9]. Hence Ki
sb can be used to define more realistic boundary conditions

at the inner edge of each gear disk.
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A simplified expression of energy dissipation within the mesh will be employed based
on the proportional viscous damping assumption:

Ci j− k
m (ui*)= cd Ki j− k

m (ui*), k= i, j; Qi j
md (t)=Qi j− i

md (t)−Qi j− j
md (t), (35a, b)

where cd is a damping proportionality constant, Qi j− i
md =Ci j− i

m q̇i
m is the dissipative mesh

force on gear i due to its own vibratory motion and Qi j− j
md =Ci j− j

m q̇j
m is the dissipative force

due to the vibratory motion of gear j.

6. MULTI-MESH FORMULATION FOR COMPLIANT GEARS

6.1. 

The single gear mesh formulation developed in section 2.4 can now be extended to the
multi-mesh geared system. As in the previous article [9], gears can either be connected
through mesh and/or by a common shaft. Some of the combinations of such connections
are shown in Figure 1. Figures 1(a) and (b) show systems with a single gear mesh with
both the gears attached to the transmission body through shaft-bearing interfaces.
Figure 1(c) shows a typical reverse-idler system with two gear meshes and three gears each
attached to the transmission body through the shaft-bearing interfaces. Figure 1(d) shows
a double reducer, again with two gear meshes but four gears, two of which are directly
connected to the transmission body, while the other two are connected to the transmission
body as well as to each other through the shaft-bearing interface. In a multi-mesh geared
system, if a gear i meshes with one or more gears given as mi, the elastic and damping mesh
forces on this gear are the sum of forces from all of the meshes mi:

Qi
mg (t)= s

mi

j=1

Qi j
mg (t), Qi*mg (V*, t)= s

mi

j=1

Qi j*mg (V*, t), (36a, b)

Qi
me (t)= s

mi

j=1

Qi j
me (t), Qi

md (t)= s
mi

j=1

Qi j
md (t). (37c, d)

Thus, the generalized forces of the multi-mesh geared system can be obtained in the
vectoral form as follows where NG is the total number of gears:

Qmg =[Q1T

mg Q2T

mg · · · QNTG

mg ]T, Q*mg =[Q1*T
mg Q2*T

mg · · · QN*GT
mg ]T, (38a, b)

Qmd =[Q1T

md Q2T

md · · · QNTG

md ]T, Qme =[Q1T

me Q2T

me · · · QNT
G

me ]T, (38c, d)

qm =[q1T

m q2T

m · · · qNT
G

m ]T, Qmg (t)=Km (uj*)qm (t), Qmd (t)=Cm (uj*)q̇m (t).

(38e–g)
Here, the system mesh matrices Km and Cm are given as follows where Ki j− k

m and Ci j− k
m can

be obtained from equations (17), (23), (30) and (35):

Kmi , j (u
i*)= s

k $ m i

Kik− i
m (ui*), if i= j,

=−Ki j− i
m (uj*), if i$ j and j $ mi,

= 06×6, if i$ j and j ( mi; i, j=1, . . . , NG . (39)

Cmi , j (u
i*)= s

k $ m i

Cik− i
m (uj*), if i= j.
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Cmi , j (u
i*)= s

k $ m i

Cik− i
m (uj*), if i= j,

=−Ci j− i
m (uj*), if i$ j and j $ mi,

= 06×6, if i$ j and j ( mi; i, j=1, . . . , NG . (40)

The shaft-bearing stiffness matrix Ksb (u*), the structural stiffness matrix Kff (u*) and the
inertia matrix M of the complete system are obtained by assembling the individual
gear-shaft sub-assembly matrices in block diagonal forms as

Ksb (u*)=diag [K1
sb (u1*) K2

sb (u2*) · · · KNG
sb (uNG*)], (41)

Kff (u*)=diag [K1
ff (u1*) K2

ff (u2*) · · · KNG
ff (uNG*)], (42)

M=diag [M1 M2 · · · MNG]. (43)

External vibratory forces are assembled as Q=[Q1T Q2T · · · QNT
G]T to form the external

excitation vector for the system. Equations of motions for the complete multi-mesh,
multi-geared system with compliant gear bodies are formed as follows by using equations
(36–43). Observe the dual domain (u*, t) characteristics of the set of linear, periodic
differential equations:

M(u*)q̈(t)+Cm (u*)q̇(t)+Km (u*)q(t)+Kff (u*)q(t)+Ksb (u*)q(t)

=Qme (t)+Q*mg (t)+Q(t). (44)

6.2.  

The dimension (d.o.f.) of equation (44) depends on the transmission system being
modelled, the relative compliance and geometry of gear blanks and the frequency range
of interest. If the gears are relatively rigid, the flexible co-ordinates can be eliminated
altogether and then each gear-shaft sub-assembly has only 6 d.o.f. For example,
configuration I of Figure 1 has 12 d.o.f. while configuration IV will have 24 d.o.f. If the
gears were compliant, a large number of flexible co-ordinates qf must be included in
equation (44) as discussed in section 3. The number of these flexibility co-ordinates also
depends on the frequency range of interest and eigensolutions of the gear blanks. For
example, consider the single gear mesh assembly of configuration I again where both gears
resemble an annular plate. Suppose that there are 10 gear blank modes within the
frequency range of interest; at least 10 flexibility co-ordinates must be retained in each
gear-shaft subassembly. This will result in an overall model with 32 d.o.f. However, this
number increases significantly if one were to model the single gear mesh assembly of
configuration II as shown in Figure 1. Now one gear has three circular holes within its
body. The number of shape functions required to accurately represent the first 10 modes
of this gear is approximately 120. As a consequence the total d.o.f. required to obtain a
solution over the same frequency range will now be 142.

The issue of dimension is of little significance if only the eigensolutions of the reduced
LTI models are required since the eigenvalue problem is not very computer intensive.
However, if time or position varying characteristics of the system were to be retained (LTV
or NLTV), one would have to employ numerical integration, multi-term harmonic balance
or similar schemes [9, 39]. Since these techniques are highly computer intensive, a
significant increase in dimension translates into a very high computing time. It is therefore
suggested that preliminary design studies should be conducted by using the corresponding
LTI model and the final analysis be carried out with a reduced order LTV or NLTV model.
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7. MODAL STUDIES

7.1. 

Equation (44) can be converted into an equivalent LTI formulation by using time (t)
averaged contact length Gi j and offset parameters hi j. This yields the following eigenvalue
problem where X=M−1(Kmo +Kff +Ksb ), vnr is the rth natural frequency, qr is the rth
eigenvector or mode shape, and subscript o indicates a parameter averaged about an
operating point o:

[−v2
nrI+X]qr = 0. (45)

Given the time-invariant system, a finite element model of the quasi-static system could
also be constructed by using any general purpose commercial code. We have employed
the ANSYS software [35] and eight noded, isoparametric brick elements are used to
describe the compliant gears. The distributed gear mesh interface is simulated by creating
an array of linear spring elements along the line of action. The shafts are formed from
three-dimensional beam elements and the bearings are described as lumpted linear springs.
The shaft is connected to the gears through rigid beam elements of zero mass. Refer to
the prior article [23] for other details.

7.2.      

The first example considered is the single spur gear pair assembly (I) with unity gear
ratio (mg =1) as shown in Figure 1(a); other details can be found in Table 1. The system

T 2

Natural frequencies of single mesh gear assemblies I and II as obtained from FEM and MBD
formulation: see Table 1 for gear specifications

Natural frequencies vnr (Hz)
Assembly I Assembly II

Helix angle=0° Helix angle=20°
Mode ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

r MBD FEM e%† MBD FEM e%†

1 0 0 0·0 0 0 0·0
2 347 357 2·8 329 337 2·4
3 451 464 2·8 451 464 2·8
4 451 464 2·8 451 464 2·8
5 451 464 2·8 451 464 2·8
6 675 681 0·8 599 605 1·0
7 675 681 0·8 675 681 0·9
8 675 681 0·8 675 681 0·9
9 675 681 0·8 675 681 0·9

10 928 936 0·8 843 859 1·9
11 971 978 0·7 971 982 1·1
12 971 978 0·7 1048 1056 0·8
13 1264 1266 0·1 1264 1284 1·6
14 1264 1266 0·1 1264 1284 1·6
15 1264 1266 0·1 1264 1286 1·7
16 1264 1268 0·3 1388 1413 1·8
17 2380 2788 16 2380 2877 17·3
18 2380 2788 16 2380 2877 17·3
19 2380 2788 16 2380 2879 17·3
20 2380 2790 16 2430 2921 16·8

†e%= =vn,FEM −vn,MBD =
vn,FEM
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parameters such as contact length are averaged over the mesh cycle so that the resulting
system is position and time-invariant. Table 2 compares natural frequencies vnr obtained
from the analytical MBD formulation as proposed in this paper and the FEM software
ANSYS [35]. The second example is a single helical gear pair assembly (II) with helix angle
ch =20° and mg =1 as described in Table 1. Table 2 also compared results for this case.
An excellent agreement between analytical and FEM analyses is observed with error e in
vnr being less than 5% for the first 16 modes. However, a large error of 15% is observed
at higher modes. This apparent discrepancy will be explained in the next section. Some
of the pertinent mode shapes of this assembly are shown in Figures 6 and 7. The first mode
of both configurations (I and II) represents the rigid body rotation (vnr =0) about the
z-axis. The next four modes correspond to shaft bending as shown in Figure 6(a). Modes
6–9 depict gear rocking modes as shown in Figure 6(b). Such rigid body modes were

Figure 6. Rigid body deformation mode shapes of geared assembly II. (a) Mode 4, shaft bending mode; and
(b) mode 7, angular rotational mode.
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Figure 7. Flexible body mode shapes of geared assembly II. (a) Mode 11, (0, 0) flexible mode of the gears;
(b) mode 13, (0, 2) flexible mode of the gears; and (c) mode 17, (0, 4) flexible mode of the gears.

obtained previously in our earlier work [9] by using rigid gears with 6 d.o.f. per gear.
However, the next few modes correspond to the transverse flexibility of gear blanks
themselves. Using the shape functions of section 3.1, these modes are characterized by the
annular plate model notation (m, n) where m is the number of nodal circles and n is the
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T 3

Natural frequencies of single mesh gear assembly III as obtained from FEM and MBD
formulation; see Table 1 for gear specifications

Natural frequencies vnr (Hz)
Mode ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

r MBD FEM (coarse) e%† FEM (refined) e%†

1 0 0 0·0 0 0·0
2 351 360 2·5 354 0·8
3 451 464 2·8 460 2·0
4 479 493 2·8 489 2·0
5 510 525 2·9 522 2·3
6 637 643 0·9 623 −2·2
7 675 681 0·9 658 −2·6
8 797 798 0·1 775 −2·8
9 904 894 −1·1 867 −3·0

10 947 953 0·6 914 −3·6
11 1057 1062 0·5 1021 −3·5
12 1264 1285 1·6 1200 −5·3
13 1297 1292 −0·4 1262 −2·8
14 1393 1380 −0·9 1325 −5·1
15 1692 1667 −1·5 1630 −3·8
16 1744 1726 −1·0 1700 −2·6
17 2380 2878 17·3 2455 3·1
18 2406 2899 17·0 2477 2·9
19 3049 3545 10 3093 1·4
20 3073 3566 13·8 3114 1·3

† e%=(vn,FEM −vn,MBD)
vn,FEM

×100.

number of nodal diameters associated with each flexural mode. In some cases, only the
dominant motions are labeled here. Modes 10–12 are (0, 0) type and modes 13–16 are (0, 1)
type flexural modes of the gear blanks as shown in Figures 7(a) and (b) respectively. The
next four modes, as shown in Figure 7(c), are associated with the (0, 2) deformation modes

T 4

Description of assembly III models

Description FEM (coarse) FEM (refined) Description MBD

Number of shape
Number of nodes 1808 3608 functions in radial 5

direction
Number of Number of shape
elements 1304 2452 functions in 8

circumferential
direction

Dynamic degrees 200 400 Degrees of freedom 92
of freedom
Modeling time (min) 0180 0240 Modeling time (min) 20
CPU time (min) 18 80 CPU time (min) 7
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T 5

Comparison of natural frequencies of single mesh gear assembly III and its components as
obtained from MBD formulation; see Table 1 for gear specifications

Natural frequencies vnr (Hz)
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Flexible gear-shaft
sub-assemblies Assembled systems

Mode ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV
r Gear no. 1 Gear no. 2 Flexible gears Rigid gears

1 0 0 0 0
2 451 510 338 361
3 451 510 451 451
4 675 904 469 481
5 675 904 490 510
6 971 1334 606 827
7 1264 1692 668 991
8 1264 1692 670 1031
9 2380 3049 671 1096

10 2380 3049 795 1205
11 890 4729
12 1005 5528
13 1224
14 1240
15 1268
16 1384
17 2208
18 2352
19 2400
20 2436

of the gear blanks. This example clearly illustrates the simultaneous presence of both rigid
body and flexible modes within the frequency range of interest.

7.3.     -   

The next example deals with a single helical gear pair with gear ratio mg =0·88 (category
III); other details can be found in Table 1. Table 3 lists the natural frequencies vnr obtained
from the analytical MBD technique and from the FEM that is implemented by
constructing two different models. The first ‘‘coarse’’ FEM model consists of 1808 nodes
and 1304 elements while the second ‘‘refined’’ model has 3608 nodes and 2452 elements
as listed in Table 4. An excellent match (with error eQ 5%) is again observed between
analytical and ‘‘coarse’’ FEMs till the sixteenth mode. A relatively large discrepancy of
e upto 17% is observed beyond this mode. However, this apparent discrepancy vanishes
when the finite element model is refined as shown in Table 3(a). Also observe that the
‘‘coarse’’ model appears to be more stiff than the multi-body dynamics model since mostly
positive valued e are found. In contrast, the ‘‘refined’’ model is more compliant as evident
by the mostly negative values of e. This observation is in agreeement with the knowledge
that the numerical stiffness in finite element calculations usually decrease with an increase
in dimension. Table 4 compares some of the key features of alternate modelling strategies.
The multi-body dynamics scheme obviously requires at least an order of magnitude less
time in terms of both system modelling and actual computations. Since the mode shapes
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of this assembly are similar to the ones for assembly II (Figures 6 and 7), they are not
shown.

Table 5 compares the natural frequencies of individual gear-shaft components and
assemblies with rigid or flexible gears in configuration III. A large deviation in natural
frequencies of the individual gear-shaft assemblies when connected together indicates that
a strong coupling exists between the mesh stiffness and gear-shaft deformation modes. The
angular position of the mesh with respect to the gears is fixed since this is an LTI model.
Therefore those structural modes which have nodal diameters along the mesh show a
weaker coupling to the mesh dynamics than the ones which have antinodes at the mesh
position. This can be observed in Table 5 from a larger deviation of only one of any pairs
of repeated eigenvalues. For example, the repeated ninth and tenth deformation modes
of the first gear-shaft subassembly at 2380 Hz split into two distinct modes when meshed
with the second gear-shaft sub-assembly. While one of the resulting natural frequencies
moves down to 2352 Hz which is still close to the original frequency, the other goes down
significantly to 2208 Hz.

7.4.         

Assembly IV consists of two helical gears with three symmetric holes in the driver’s web.
Particulars of this gear pair are given in Table 1. Table 6 compares the natural frequencies
of this system as obtained by using the MBD and FEM models. As before, the error
between these two predictions is less than 3% for the first 18 modes. Note that there are
fewer pairs of repeated natural frequencies for this gear pair than those observed for the
symmetric pair in assembly II. This is due to the presence of three holes in the driving gear

T 6

Natural frequencies of single mesh gear assembly IV as obtained from FEM and MBD
formulation; see Table 1 for gear specifications

Natural frequencies vnr (Hz)
Mode ZXXXXXXXXXCXXXXXXXXXV

r MBD FEM e%†

1 0 0 0·0
2 343 338 1·5
3 464 451 2·8
4 480 469 2·3
5 499 490 1·8
6 609 606 0·5
7 664 668 0·6
8 673 670 0·4
9 681 671 1·5

10 818 795 2·8
11 915 890 2·7
12 1016 1005 1·1
13 1160 1224 5·5
14 1213 1240 2·2
15 1267 1268 0·1
16 1381 1384 0·2
17 2173 2208 1·6
18 2306 2352 2·0
19 2789 2400 13·9
20 2813 2436 13·4

† e%= =vn,FEM −vn,MBD =
vn,FEM

×100.
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(b)
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Figure 8. Mode shapes of geared assembly II. (a) Mode 13, (0, 2) flexible body mode of the driver; and (b)
mode 17, (0, 4) flexible mode of the driver.

which split the repeated natural frequencies. The deformation shapes of the thirteenth and
seventeenth modes associated with the (0, 2) and (0, 3) flexible body modes of the driving
gear, respectively, are shown in Figures 8(a) and (b) where the (m, n) mode has m nodal
diameters and n nodal circles.

7.5.    - 

Assembly V describes a reverse-idler reducer configuration of Table 1 with three helical
gears and two meshes as shown in Figure 1(c). Both FEM and MBD predictions of natural
frequencies of this assembly are given in Table 7 together with the predicted error which
is less than 3% for all of the modes studied. Figures 9(a) and (b) show two selected mode
shapes of this dual mesh system. The first mode shape illustrates some coupling between
the rigid and flexible d.o.f. The driver and the driven gears exhibit (0, 0) flexible body
modes while the idler undergoes a rigid body rotation. Due to the relatively high mesh
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stiffness (Km =108 N/m2), the dynamic deformations in all the gears are such that the
relative motion at the mesh points on the gears is very small. This shows a strong
interaction between the mesh and the structural deformation modes. The second mode
shape is an example of the case where all the gears exhibit different flexible body modes.
The driver and the driven gears are undergoing (0, 2) modes while the idler gear exhibits
a (0, 0) mode. Notice again that the nodal diameters in the two outer gears are located
such that there is a minimum possible deformation at either gear mesh interfaces.

7.6.       

Now we consider a dual mesh system consisting of four spur gears in two planes, as
designated by assembly IV in Figure 1, and Table 1. Table 8 compares the natural
frequencies yielded by our theoretical (MBD) model with those predicted by FEM. An
excellent agreement is again observed since the error is less than 3%. Mode shapes are
similar to the example discussed earlier in section 7.5. Two selected bending and rocking
mode shapes are shown in Figure 10.

7.7.     

The next example is a gear assembly consisting of two dissimilar spur gears which
resemble rings. Relevant dimensions of this assembly (VII) are given in Table 1. The
transverse deformations have been artificially suppressed since this case is used to illustrate

T 7

Natural frequencies of single mesh gear assembly V as obtained from FEM and MBD
formulation; see Table 1 for gear specifications

Natural frequencies vnr (Hz)
Mode ZXXXXXXXXXCXXXXXXXXXV

r MBD FEM e%†

1 0 0 0·0
2 245 241 1·6
3 419 408 2·6
4 464 451 2·8
5 464 451 2·8
6 480 467 2·7
7 525 510 2·9
8 634 632 0·3
9 645 640 0·8

10 681 675 0·9
11 681 675 0·9
12 772 772 0·0
13 864 854 1·2
14 895 904 1·0
15 966 957 0·9
16 1025 1018 0·7
17 1113 1101 1·1
18 1285 1264 1·6
19 1290 1264 2·0
20 1291 1287 0·3
21 1373 1345 2·0
22 1392 1410 1·3
23 1668 1692 1·4
24 1791 1798 0·4

† e%= =vn,FEM −vn,MBD =
vn,FEM

×100.
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Figure 9. Mode shapes of multi-mesh geared assembly V. (a) Mode 15, coupled flexible and rigid body modes,
(0, 0) flexible body mode of driver and driven gears, rotational rigid body mode of the idler; and (b) mode 20,
coupled flexible body modes of the gears, (0, 2) mode of the driver and the driven gear, (0, 0) mode of the idler.

the coupling between the radial deformation motion in thin compliant gears and the gear
mesh regime. Also, for the same reason, gears are free-floating, i.e., not connected to any
shaft or bearings. Table 9 lists natural frequencies of individual ring gears together with
those of the coupled assembly. Again, the error between the analytical (MBD) and finite
element model predictions is below 3% for the first 22 modes. Figures 11(a–d) show a few
mode shapes of this assembly. Unlike the previous examples, where the spur gear mesh
did not result in strong coupling between the rigid body and the transverse flexural
deformation modes, the radial deformation modes of the ring gears are very strongly
effected by the mesh stiffness. This is obvious from a large change in natural frequencies
of individual ring gears when they are meshed with each other.

8. FORCED RESPONSE STUDIES

8.1.     - -

Once the eigensolutions have been obtained for a disk-shaft sub-assembly, the modal
superposition method can be used to calculate forced response characteristics such as
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sinusoidal transfer functions. Dynamic compliance HP/Q and accelerance AP/Q between
points P(rP , uP ) and Q(rQ , uQ ) on a disk-shaft subassembly are given as follows where
yr (rP , uP ) and yr (rQ , uQ ) are the deformation of the rth mode at points P and Q (see
Figure 12), vr and jr are the rth natural frequency and modal damping ratio, respectively,
and v is the excitation frequency:

HP/Q (v)=
rP

FQ (v)
= s

NS

r=1

yr (rP , uP )yr (rQ , uQ )
(v2

r −v2)+2jjr vvr
,

AP/Q (v)=
aP

FQ (v)
= s

NS

r=1

−yr (rP , uP )yr (rQ , uQ )
v2((v2

r −v2)+2jjr vvr )
. (46a, b)

Here, rP and aP are dynamic displacement and acceleration respectively at point P due
to a sinusoidal force FQ applied at point Q. The series can be truncated to NS modes
depending on the frequency range of interest.

T 8

Natural frequencies of single mesh gear assembly VI as obtained from FEM and MBD
formulation; see Table 1 for gear specifications

Natural frequencies vnr (Hz)
Mode ZXXXXXXXXXCXXXXXXXXXV

r MBD FEM e%†

1 0 0 0·0
2 159 155 2·5
3 198 190 0·0
4 284 275 3·2
5 429 416 3·0
6 479 466 2·7
7 526 510 3·0
8 526 510 3·0
9 604 608 0·7

10 617 610 1·1
11 673 704 6·0
12 677 707 4·0
13 834 855 2·5
14 893 904 1·2
15 893 904 1·2
16 894 904 1·1
17 894 904 1·1
18 963 928 3·6
19 968 953 1·5
20 981 968 1·3
21 1008 997 1·1
22 1118 1073 0·0
23 1264 1264 0·0
24 1264 1264 0·0
25 1265 1264 0·1
26 1265 1264 0·1
27 1290 1334 3·4
28 1291 1334 3·3
29 1647 1692 2·7
30 1648 1692 2·7

† e%= =vn,FEM −vn,MBD =
vn,FEM

×100.
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Figure 10. Mode shapes of multi-mesh geared assembly VI. (a) Mode 11, rotational rigid body modes of the
first stage driver and second stage driven gears; and (b) mode 18, flexible body modes (0, 0) of the first stage
driver and the second stage driven gears.

8.2.    - -

An experimental clamp was built to simulate the gear-shaft interface at the inner edge
(ri ) of annular gear-like disks as shown in Figure 12. The characteristics of this clamp-disk
assembly is described by the authors in reference [23]. An electrodynamic shaker (5-lb
force) was attached at point Q and an accelerometer at P to obtain the cross-point and
driving point accelerances. The dimensions and other relevant data of several annular-like
disks used in this study are given in Table 10. Figures 13–15 show the measured
accelerances. In particular, Figure 13(a) compares the experimental with the analytical
driving point accelerance (AQ/Q ) obtained by using equation (31b) for the annular-like disk
no. 1. This resembles an annular plate. Experimental values of damping ratios were used
in the analytical formulation. Predicted and experimental accelerance transfer functions
compare well. Next, the accelerometer was located at point P (Figure 12) to obtain the
cross-point accelerance which is shown in Figure 13(b). Again, the overall characteristics
of two accelerance plots are similar except between 1000 and 1700 Hz where the
experimental data has several resonance peaks that are not predicted by the modal
superposition method. In reference [23], it has been shown that this clamp, like any other
real life clamping condition, does not act as a perfectly rigid support, but has some
dynamic characteristics of its own which couple with those of the disk. These may be
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observed as extraneous peaks in the cross-point accelerance plots. The driving-point and
cross-point accelerance for disk no. 2 (Table 9) are given in Figures 14(a) and (b). This
disk has two circular concentric holes which makes the disk more compliant. This is evident
from the higher accelerance amplitudes at the resonant peaks. Also, more effects of the
clamp dynamics are observed between 1000 and 1700 Hz. Disk no. 3 has three
symmetrically placed concentric holes and results are given in Figure 15. The predicted
accelerance for this disk compares well with the experimental data only in the lower
frequency regime. But there are considerable discrepancies between theory and experiment
for the accelerance amplitude above 1000 Hz. These results suggest that the theoretical
shape functions used to describe the disk are not adequate for a disk of complex geometry
and cannot be subsequently used in equation (44) for obtaining the overall multi-mesh
solution. For systems containing gears with such complex blank geometry, the formulation
proposed in section 3 should be used instead, with experimentally obtained shape
functions.

8.3.     -  

The methodology of section 5.1 for gear-shaft sub-systems is now extended to
multi-mesh systems. It should however be noted that mode shapes and natural frequencies
can only be obtained for the reduced LTI multi-mesh formulation of equation (45), and
hence the modal superposition method is applicable only to this particular case. On

T 9

Natural frequencies of single mesh ring gear assembly VII as obtained from FEM and MBD
formulation; see Table 1 for gear specifications

Natural frequencies vn (Hz)
Sub-assemblies Assembly

ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV
Mode Ring gear 1 Ring gear 2

r (MBD) (MBD) MBD FEM e%†

1 0 0 0 0 0·0
2 538 687 460 468 1·7
3 538 687 538 539 0·2
4 1522 1943 601 616 2·5
5 1522 1943 687 688 0·1
6 2918 3725 793 799 0·8
7 2918 3725 1522 1527 0·3
8 4719 6025 1540 1538 0·1
9 4719 6025 1943 1947 0·2

10 6922 8838 1958 1956 0·1
11 6922 8838 2918 2932 0·5
12 2925 2936 0·4
13 3725 3733 0·2
14 3731 3737 0·2
15 4719 4752 0·7
16 4723 4754 0·7
17 6025 6039 0·2
18 6028 6041 0·2
19 6922 6990 1·0
20 6925 6991 1·0
21 8838 8867 0·3
22 8840 8870 0·3

† e%= =vn,FEM −vn,MBD =
vn,FEM

×100.
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Figure 11. Mode shapes of ring gear assembly VII. (a) Mode 6, flexible body mode (2) of the driver; (b) mode
11, flexible body mode (3) of the driver; (c) mode 17, flexible body mode (4) of the driven gear; and (d) mode
21, flexible body mode (5) of the driven gear.

applying the normal mode expansion technique to equation (45), we obtain the following
steady state response at frequency v where ri

P and ai
P are the vectoral deformation and

acceleration at point P on the ith gear while Fj
Q is the vectoral force at point Q on the

jth gear:

ui
P(v)= [I* ũi

P Si
P] s

a

r=1 6 yr yT
r

(v2
r −v2)+2jjr vvr7&I*

T

ũjT
Q

SjT
Q'Fj

Q(v), (47a)

ai
P(v)= [I* ũi

P Si
P] s

a

r=1 6 −yr yT
r

v2((v2
r −v2)+2jjr vvr )7&I*

T

ũjT
Q

SjT
Q'Fj

Q(v). (47b)

Figure 12. Schematic of experiment used for the forced response study.
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T 10

Annular-like disk cases used for forced response studies

Example case Description Pertinent dimensions (mm)

1 Annular disk with no holes —
2 Annular disk with 2 holes rh =55·9, j=27
3 Annular disk with 3 holes rh =55·9, j=20·0

ro =89·4 mm, ri =19·98 mm, t=6·35 mm, E=201 Gpa, r=7800 kg/m3 and n=0·28. A shaft is attached to
these disks at ri .

Figure 13. Forced response characteristics of gear blank no. 1. (a) Driving point acclerance AQ/Q spectra; and
(b) cross-point accelerance AP/Q spectra. ——, analytical (MBD); w, experimental.
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Figure 14. Comparison of forced response characteristics of gear blank no. 2 (with two circular holes). (a)
Driving point accelerance AQ/Q spectra; and (b) cross-point accelerance AP/Q spectra. ——, analytical (MBD); w,
experimental.

Here, I*, ũi
P and Si

P are as defined in section 4, cr is the eigenvector matrix obtained from
equation (30), vr is the rth natural frequency and v is the excitation frequency. Dynamic
compliance Hi j

P/Qmn
or accelerance Ai j

P/Qmn
transfer functions can be obtained between any of

the three components (m= x, y, z) of response ri
P or ai

P respectively and any (n= x, y, z)
component of the force Fj

q.

8.4.   - 

The gear assemblies of Figure 1 and Table 1 are now studied using the forced response
formulation derived in section 8.3 to better understand their dynamic behavior.
Eigensolutions of these systems, as discussed in section 4, are used in equation (47b) to
obtain their accelerance characteristics. Finite element models are again used to verify the
forced response calculations for the reduced LTI formulation. A helical, asymmetric gear
assembly (III) is chosen as an example for illustrating the dynamics of single mesh systems.
Figure 16 shows good agreement between analytically obtained cross-point accelerance
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A12
P/Qzz

and finite element predictions. Here, the excitation point P(r= ro , u=180°) lies on
gear 1 while the response position Q(r= ro , u=0°) is across the mesh on gear 2. To
illustrate the effect of asymmetry on the dynamics of gear pair, Figure 17 compares
cross-point accelerance A12

P/Qzz
of this assembly with the results of a symmetric assembly (II).

The asymmetric gear pair has more resonant peaks than the symmetric pair because the
latter has a number of repeated natural frequencies (refer to Tables 2, 3 and 4).

Figure 18 illustrates the coupling between the rigid body and the flexible body modes
via accelerance plots A11

P/Qzz
and A22

P/Qzz
for two gear-shaft sub-assemblies. Before these

sub-assemblies are meshed, the resonant peaks in accelerance plots corresponded to the
shaft bending and gear blank deformation modes. Further, since these gears are not
similar, they have resonant peaks at different frequencies as evident from Table 5. In
Figure 18, the accelerance A12

P/Qzz
plot for an assembly with artificially rigid gears has

resonant peaks corresponding to the shaft/bearing deformation modes only. The complete
assembly with compliant gears shows, however, a rather strong coupling between these

Figure 15. Forced response characteristics of gear blank no. 3 (with three circular holes). (a) Driving point
accelerance AQ/Q spectra; and (b) cross-point accelerance AP/Q spectra. ——, analytical (MBD); w, experimental.



10–10

10–11

400200 600 800 1000 1200 1400 1600 1800

Frequency (Hz)

A
P

/Q
zz

12

10–9

10–8

10–7

10–6

10–5

10–4

10–4

10–6

600 1800

Frequency (Hz)

A
P

/Q
Z

Z

400 800 1000 1200 1400 1600

10–5

10–7

10–8

10–9

10–10

10–11

200

12

   205

Figure 16. Cross-point accelerance A12
P/Qzz spectra of gear assembly III. ——, analytical (MBD); w, FEM.

Figure 17. Cross-point accelerance A12
P/Qzz spectra of (II) and asymmetric (III) gear assemblies. ——, assembly

III; -----, assembly II.
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Figure 18. Cross-point accelerance of gear assembly (III) and its sub-assemblies (see Table 4). ——, A12
P/Qzz

spectra of assembly with flexible gears; -----, A12
P/Qzz spectra of assembly with rigid gears; - · - · - · -, AP/Qzz spectra

of gear-shaft sub-assembly no. 1; · · · · · ·, AP/Qzz spectra of gear-shaft sub-assembly no. 2.

Figure 19. Cross-point accelerance A12
P/Qzz spectra of gear assembly (IV). ——, analytical (MBD); w, FEM.
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Figure 20. Cross-point accelerance A12
P/Qzz spectra of gear assembly (V). ——, analytical (MBD); w, FEM.

modes of deformation as evident from the characteristics of its accelerance as seen in
Figure 18. The lower two modes correspond to rigid body rotation along the z-axis and
hence they are not affected by the transverse flexural deformation of gears. But all of the
higher modes deviate considerably from the sub-assembly modes due to the meshing of
gears. This demonstrates the necessity of analyzing the multi-mesh geared transmission
from a dynamic system viewpoint.

Gear assembly IV represents a system with a compliant, weight-optimized gear, i.e., gear
no. 1 has three circular holes. The analytical formulation of section 8.3 is used to obtain
the cross-point accelerance A12

P/Qzz
for this assembly. Figure 19 compares results with those

obtained using the finite element model. Two methods predict very similar accelerance
spectra, however, a slight error is observed due to the shape function approximations
associated with the multi-body dynamics technique.

Finally, the gear assembly V is studied as an example of a multi-mesh geared system.
Cross-point accelerance A13

P/Qzz
is obtained between the forcing point P(r= ro , u=180°) on

gear 1 and the response point Q(r= ro , u=0°) on gear 3. Figure 20 shows a typical
spectrum which is influenced by the flexible body modes of the gears and the two mesh
deformations. Again a very close match is obtained between analytical (MBD) and finite
element methods.
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9. EFFECT OF GEAR ORIENTATION

The deformation shape functions of any gear, say i, are defined in the gear co-ordinate
system Xi

G–Yi
G–Zi

G which rotates with respect to the mesh co-ordinate system Xi
Gm–Yi

Gm–Zi
Gm

with a mean gear rotational velocity Vj*. Thus the gear body deformation shape functions
rotate with respect to the stationary mesh with the same rotational velocity V*. Since there
is a strong coupling between the rigid body mesh dynamics and the gear body flexural
dynamics, this relative rotation should give rise to ‘‘pseudo’’ forces Qi j− j*mg (V*, t) and
Qi j− i*mg (V*, t) as discussed earlier in section 3. This effect may be easily observed by
comparing the forced responses for an LTI geared assembly but evaluated at selected
spatial operating points given by the rotational position u*= ft

0 V* dt. Assembly IV is
chosen as an example to illustrate this phenomenon since the rotational position of the
gears are uniquely identified with respect to the holes in the first gear as shown in Figure 21.
Due to the symmetry of the holes only three intermediate anti-clockwise rotational
positions, u*=0, 30 and 60°, are adequate to represent the various orientations of the
gears. Figure 22 shows the cross-point accelerance A12

P/Qzz
spectra at three different spatial

positions. The first few modes which are predominantly rigid body modes are virtually
unchanged but the higher modes, corresponding to the flexible gear body modes, are
strongly affected by a change in the gear orientation. Figure 22(b) shows an expanded view
of the resonance peaks corresponding to the (0, 2) flexible body modes of the two gears.
The first peak is due to the flexible body mode of the driver gear which has three holes
within its body. As the gears rotate through 60°, there is a considerable shift in the
frequency of this resonance (050 Hz). This is because the local stiffness of the gear
increases as the hole moves away from the meshing zone (refer to Figure 21), thereby
resulting in a corresponding increase in the frequency associated with this resonance. The
second peak however is due to the driven gear which resembles an annular disk. Since there
is no change in the ‘‘local’’ stiffness of the driven disk with respect to the mesh as both
gears rotate, no appreciable deviation in the resonant frequency is observed. This
parametric coupling phenomenon can be very easily studied by the proposed multi-body

Figure 21. Different orientations of a gear assembly (III).
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Figure 22. Cross-point accelerance A12
P/Qzz spectra of gear assembly (III) at different gear orientation. (a) The

complete spectra; and (b) expanded view of inset in (a) ——, u*=0°; w, u*=30°; ×, u*=60°.
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dynamics methodology, unlike other numerical techniques such as finite elements.
However, this is beyond the scope of this study.

10. CONCLUSION

The analysis of multi-mesh transmissions with compliant gears includes the effects of
contact mechanics, rigid body gear mesh interface dynamics and their interactions with
elastic deformations of gear bodies. The resulting formulation is a non-linear, spatially or
time-varying system. The solution of governing equations can be obtained from the direct
time domain integration, the Galerkin’s procedure or other numerical techniques. However
these methods are computationally intensive since a very high number of d.o.f. is involved
in the computation. A reduction to a corresponding LTV equation makes the solution
procedure slightly more convenient. Finally, an LTI approximation results in an eigenvalue
problem that can be easily solved and compared with other LTI analyses such as the finite
element method.

This paper extends the prior two articles by the same authors [9, 23] which analyzed the
multi-mesh transmissions with rigid gears and compliant gear-like disks separately. Three
main contributions emerge from this paper. First, a new mesh expression has been
developed for gear pairs with compliant gear bodies. The dynamics of this system has been
compared to the one with rigid gears, and the importance of coupling between the rigid
body and flexible body dynamics has been quantified. Second, this formulation has been
integrated within the multi-body dynamics framework in order to obtain a comprehensive
model of a multi-mesh geared system with compliant gears. The resulting NLTV equations
have been reduced to LTV and LTI equations. The importance of the time-varing
characteristics of such geared systems with compliant gears has been noted. A strategy has
been formulated through which shape functions from plate or ring-like bodies can be
incorporated in addition to numerical eigensolutions from FEM for complex gear bodies.
Third, a method of constructing forced response solutions for an LTI system has been
formulated and the results compare well with finite element models. The proposed
formulation reduces large degree-of-freedom spatial domain models (e.g. finite element
models) to a reduced degree-of-freedom modal domain model while maintaining the
accuracy of solution. This typically results in a vast improvement in solution time. Even
for an LTI system the proposed method takes an order-of-magnitude less solution time
than the finite element method, as evident from Table 4. This solution efficiency will
increase many folds when solutions to NLTV systems are sought. Limited experimental
verification of the forced response characteristics of a few individual gear-shaft
sub-assemblies has been completed. Eventually, a full scale experimental study of
multi-mesh geared systems with compliant gears will be required to validate the theory
presented in this paper.
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APPENDIX: LIST OF SYMBOLS

A rotational transformation matrix
A accelerance
a acceleration of point P on gear i
â, b
 , ĉ, d
 , ê Fourier coefficient vectors
a, b shaft lengths
C damping matrix
CS trignometrical shape functions
cd damping proportionality constant
D differential operator matrix
E elasticity matrix
E Young’s modulus
F force vector
F discrete Fourier transform (DFT) matrices
f frequency (Hz)
fn natural frequency (Hz)
fr natural frequencies
G Euler parameter matrix
g, i, j, k, l, p, q indices
H compliance
h contact line offset
I identity matrix
i, j gear number
K scalar stiffness value
K stiffness matrix
L overall rms error in mode shape
D Fourier differentiation matrix
M inertia matrix
m inertia sub-matrices
m modal index in the radial direction (r)
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m, n harmonic order
mg gear speed ratio
N number of terms, holes or gears
n modal index in the circumferential direction (u)
n̂ bearing position vector
P polynomial shape function
P a point on the line of contact
p net transmission error
Q generalized force vector
q generalized coordinate vector
R subspace
R generalized translational co-ordinate
R residue
r, u, z cylindrical co-ordinate
r vector position of a point in the geometric co-ordinate
r radius or modal index
r̄ dimensionless radius (r/ro )
S, S shape function and shape function matrix
SC trigonometrical shape function
T kinetic energy
T torque vector
t time
U potential energy
ū vector position of a point in the geometric co-ordinates with respect to the

centroid
û, v̂, ŵ, p̂, q̂ unit vectors along the mesh coordinates
V volume
X state space system variable
X, Y, Z co-ordinate system
x, g, f mesh co-ordinate system
x, s, h helical mesh coordinate system
d mesh displacement (with subscript)
d small change (without any subscript)
F mean square norm
f gear diameter
G contact length
G material removal or addition fraction
h shape function participation factor
l eigenvalue parameter (dimensionless)
m mesh space
n sub-harmonic index
U damping matrix
U trigonometric shape function
u generalized rotational coordinate
u nominal angular position
r density
s boundary condition
t non-dimensionalized time
J system matrix
V rotational speed (r.p.m. or Hz)
v natural frequency (rad/s)
j radius of circular holes
jr damping ratio of rth mode
c mode shape
c� normalized modal displacement
C helix angle
z shaft subspace

Superscripts

T transpose
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i, j gear numbers
l gear number
p order of differentiation
* pseudo
�−1� term by term inverse

Subscripts

f, g, k, l, m, n, p, q indices
ff flexibility
G body co-ordinate system
g rigid body blank motion
Gm geometric co-ordinate system
H material removal (holes, slots, etc.)
i inner
k bearing number
m dynamic
md dynamic (dissipative)
me dynamic (elastic)
o mean
q generalized co-ordinates
Q hub
R linear
s shaft
sB shaft bending
sR shaft rocking
sT shaft longitudinal
b bearing
R rim
ROT rotational
r modal index
rms root mean square
S shape function
x, y, z co-ordinates
e transmission error
u angular
s linear position along the line of contact
˜ asymmetric matrix

Abbreviations

Expt. experimental
FEM finite element method
LTI linear time-invariant
LTV linear time varying
MBD multi-body dynamics
STE static transmission error
diag diagonal matrix
vec vectorize


